

Website: www.Dig2Grow.com

Twitter: @Dig2Grow

Facebook.com/Dig2GrowBooks

Invention of the plow fundamentally altered the balance between soil production and soil erosion, dramatically increasing soil erosion...

Historical soil erosion in the Piedmont region

In researching *Dirt*, I compiled data on both contemporary and longterm (geological) erosion rates—and agricultural erosion rates.

Erosion Rates

Measurement type	median (mm/yr)
Conventional (448)	1.54
No-till (47)	0.08
Native Vegetation (65)	0.01
Soil Production (188)	0.02
Geological (925)	0.03

Net soil loss of ≈1 mm/yr implies that erosion of a typical 0.5 to 1 m thick hillslope soil could occur in roughly 500 to 1000 years.

This is approximately the lifespan of most major civilizations outside of major river floodplains...

Is Soil Restoration Possible?

Can we reverse the historical pattern?

The Brown Goods

The Green Goods

The LIVING Goods

We can build soil surprisingly fast — faster than nature

The rhizosphere is a zone rich with microbial life, a living halo that surrounds plant roots

The rhizosphere is a biological bazaar where microbes and plants trade nutrients, metabolites, and exudates

Fertilizer Diet Soil Life Diet N, P, K micronutrients good microbe metab's

Principles of Conservation Agriculture

- minimal or no disturbance / direct planting of seeds (e.g., no-till)
- permanent ground cover (retain crop residues and include cover crops in rotations)
- diverse crop rotations (to maintain soil fertility and break up pathogen carryover)

Adopting no-till, cover crops, and complex rotations reduced inputs of diesel, fertilizer and pesticide by more than half.

Traditional Yield

soybeans: 63 bushels/acre

corn: 217 bushels/acre

Complex Rotation Yield

soybeans: 79 bushels/acre

corn: 235 bushels/acre

Dakota Lakes Research Farm South Dakota

Traditional (slash and burn) vs. no-till with cover crops

Erosion

Traditional: 1787 kg/ha/yr

No-till: 77 kg/ha/yr

Traditional Yield

corn: 1.5 tons/ha

cowpeas: 0.8 tons/ha

No-till Yield

corn: 4.5 tons/ha

cowpeas: 1.5 tons/ha

County Average

Full tillage, 200 lbs N & 2.5 quarts Roundup / acre

Total cost ≈ \$500/acre Corn yield ≈ 100 bushels/acre At \$4/bushel = -\$100 / acre

44-year no-till with cover cropsNo tillage, 24 lbs N & 1 quart
Roundup / acre

Total cost ≈ \$320/acre Corn yield ≈ 180 bushels/acre At \$4/bushel = + \$400 / acre

Benefits of Conservation Agriculture

- comparable or increased yields
- greatly reduced fossil fuel and pesticide use
- increased soil carbon and water retention (crop resilience)
- higher farmer profits & less pollution

This is not really a question of low tech organic versus GMO & agro-tech...

... but how to apply an understanding of soil ecology to the applied problem of increasing — and sustaining — crop yields in a post-oil environment.

Carbon Sequestration Potential

Rattan Lal conservatively estimated that conservation agriculture could put enough carbon back into soils to offset 5 to 15% of global fossil-fuel emissions.

The Rodale Institute (and others) have suggested that carbon sequestration in soils could **fully offset fossil fuel emissions**.

The First Revolution

Cultivation

The Second Revolution

Husbandry / Crop Rotations / Grazing

We know more about the movement of celestial bodies than about the soil underfoot.

- Leonardo da Vinci

The Third Revolution

Mechanization and Industrialization

Sidebar...

Liebig's change of heart

In his 1863 book, *The Natural Laws of Husbandry*, the father of fertilizers recommended returning organic matter to the fields to provide crops with a full complement of nutrients.

The Fourth Revolution

Green Revolution and Biotechnology

Wheat yields in Least Developed Countries

The Fifth Revolution

Soil-Health

Soil Health — the Future of Agriculture

Restoring agricultural soils can help with ...

Feeding the world

Climate change (carbon sequestration)

Environmental Degradation

Restoring farm profitability

Website: www.Dig2Grow.com

Twitter: @Dig2Grow

Facebook.com/Dig2GrowBooks

